Robust offset‐free nonlinear model predictive control for systems learned by neural nonlinear autoregressive exogenous models

نویسندگان

چکیده

This paper presents a robust model predictive control (MPC) scheme that provides offset-free setpoint tracking for systems described by neural nonlinear autoregressive exogenous (NNARX) models. To this end, NNARX learns the dynamics of plant from input-output data is augmented with an explicit integral action on output error. A tube-based MPC finally designed, leveraging unique structure model, to ensure convergence constant reference signals even in case plant-model mismatch. Numerical simulations water heating system show effectiveness proposed algorithm.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Model Predictive Control for a Class of Discrete Nonlinear systems

This paper presents a robust model predictive control scheme for a class of discrete-time nonlinear systems subject to state and input constraints. Each subsystem is composed of a nominal LTI part and an additive uncertain non-linear time-varying function which satisfies a quadratic constraint. Using the dual-mode MPC stability theory, a sufficient condition is constructed for synthesizing the ...

متن کامل

Robust model predictive control for nonlinear discrete-time systems

This paper describes a model predictive control (MPC) algorithm for the solution of a state-feedback robust control problem for discrete-time nonlinear systems. The control law is obtained through the solution of a finite-horizon dynamic game and guarantees robust stability in the face of a class of bounded disturbances and/or parameter uncertainties. A simulation example is reported to show th...

متن کامل

A Nonlinear Autoregressive Model with Exogenous Variables Neural Network for Stock Market Timing: The Candlestick Technical Analysis

In this paper, the nonlinear autoregressive model with exogenous variables as a new neural network is used for timing of the stock markets on the basis of the technical analysis of Japanese Candlestick. In this model, the “nonlinear autoregressive model with exogenous variables” is an analyzer. For a more reliable comparison, here (like the literature) two approaches of  Raw-based and Signal-ba...

متن کامل

Improved Optimization Process for Nonlinear Model Predictive Control of PMSM

Model-based predictive control (MPC) is one of the most efficient techniques that is widely used in industrial applications. In such controllers, increasing the prediction horizon results in better selection of the optimal control signal sequence. On the other hand, increasing the prediction horizon increase the computational time of the optimization process which make it impossible to be imple...

متن کامل

Self-optimizing Robust Nonlinear Model Predictive Control

This paper presents a novel method for designing robust MPC schemes that are self-optimizing in terms of disturbance attenuation. The method employs convex control Lyapunov functions and disturbance bounds to optimize robustness of the closed-loop system on-line, at each sampling instant a unique feature in MPC. Moreover, the proposed MPC algorithm is computationally efficient for nonlinear sys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Robust and Nonlinear Control

سال: 2023

ISSN: ['1049-8923', '1099-1239']

DOI: https://doi.org/10.1002/rnc.6883